24 research outputs found

    How to run a brain bank. A report from the Austro-German brain bank

    Get PDF
    The sophisticated analysis of and growing information on the human brain requires that acquisition, dissection, storage and distribution of rare material are managed in a professional way. In this publication we present the concept and practice of our brain bank. Both brain tissue and information are handled by standardized procedures and flow in parallel from pathology to neuropathology and neurochemistry. Data concerning brain material are updated with clinical information gained by standardized procedures

    Neurological diseases as primary gliopathies: a reassessment of neurocentrism

    Get PDF
    Diseases of the human brain are almost universally attributed to malfunction or loss of nerve cells. However, a considerable amount of work has, during the last decade, expanded our view on the role of astrocytes in CNS (central nervous system), and this analysis suggests that astrocytes contribute to both initiation and propagation of many (if not all) neurological diseases. Astrocytes provide metabolic and trophic support to neurons and oligodendrocytes. Here, we shall endeavour a broad overviewing of the progress in the field and forward the idea that loss of homoeostatic astroglial function leads to an acute loss of neurons in the setting of acute insults such as ischaemia, whereas more subtle dysfunction of astrocytes over periods of months to years contributes to epilepsy and to progressive loss of neurons in neurodegenerative diseases. The majority of therapeutic drugs currently in clinical use target neuronal receptors, channels or transporters. Future therapeutic efforts may benefit by a stronger focus on the supportive homoeostatic functions of astrocytes

    Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Get PDF
    BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons

    Neuropathologie der „endogenen“Psychosen

    No full text
    corecore